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It is shown that there exist closed, convex sets in R" for which the best p-norm
approximations to a fixed element of R" fail to converge as p --. ,'J:). Furthermore, it
is shown that even if the best approximations converge, they need not converge to
the strict best uniform approximation. 'I:;, 1989 Academic Press, Inc.

INTRODUCTION

For xERn we define the p-norm of x, 1~p< CXJ, by Ilxll p = (L: IxiIP)I/p
and define Ilxll oc , the uniform norm of x, as max Ix;!, Denote R n with the
p-norm by [P. If M is closed and convex in R n

, not containing y, then Z E M
is said to be a best approximation from M to Y with respect to a norm II II,
if liz - YII = minsEM lis - YII. Since we may translate M, henceforth we will
assume that Y = O.

In this setting, best approximations must exist for any norm, and they
are unique for the p-norms, 1 <p < 00. Denote by x p the p-norm best
approximation to 0 from M. Although for p = 00 there may be more
than one best approximation, there is a distinguished best uniform
approximation known as the strict (best uniform) approximation. This
element is constructed as follows. For M as above, let W be the set of best
[00 approximations. For each Z E W let Izi be the vector whose coordinates
are given by the values IZil arranged in non-decreasing order. Impose the
lexicographic ordering on the vectors Izi. There exists a unique WE W
which has Iwi minimal in this ordering [8]. This element is defined to be
the strict uniform best approximation.

If we denote by xp=xp(M) the [P best approximation to 0 for 1 <p< 00,

then for any sequence Pi ---> 00, X p , must contain a convergent subsequence.
If x is a limit of such a subsequence, then x must be a best uniform
approximation. In general, the net {xp: p > I} may have many limit points.
If this net has a limit as p ---> 00, we say that the P6lya algorithm converges.
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P6lya [7] first considered the analogous problem in polynomial
approximation on an interval. Questions regarding the convergence of the
net {xp: p > I} in R n first arose in the contexts of solutions of overdeter­
mined systems of equations and discrete polynomial subspace
approximation [4]. Cheney and Curtis [1] first posed the question of
whether the P6lya algorithm must converge when the approximating set is
an affine subspace of Rn

. This was answered in the affirmative by Desdoux
[2] who showed that the net converges to the strict approximation. This is
in strong contrast to the corresponding problem in LP[O, 1], where the
P6lya algorithm may fail to converge even when the approximating set is a
one-dimensional affine subspace [2]. Attempts have been made to
generalize Descloux's results to a wider class of approximating sets.
Houtari et af. [5] showed that the P6lya algorithm must converge to the
strict approximation whenever the convex approximating set satisfies a
condition they termed E-cylindrical. It remained open whether this
condition was necessary, or whether the results in [5] could be generalized
to arbitrary convex sets in R n

• The following examples show that these
results are in some sense sharp and to not generalize.

The first example shows that the P6lya algorithm may converge to a
point other than the strict approximation.

EXAMPLE 1. Let K c R 3 be the region enclosed by the parabola
x I = (x2 - 3) 2 + 3 in the plane x 3 = 1, i.e.,

For 1 <p < CXJ, let ~ = ~p be the best fP approximation from K to O. Since ~

must lie on the lower boundary of K, ~ = (3 + 15 2
, 3 - 15, 1) for some

15 = Dp ~ O. Let H be the convex hull of K and (3,3,0) . The set H is closed
and convex and the strict approximation from H to 0 is IV = (3,3,0). Let x p

be the best fP approximation from H to O. We will show that x p does not
converge to w.

For each x in H, let fPp(x) = Ilxll;. For x on the boundary of K,
x = (3 + S2, 3 - S, 1), so fP p can be considered as a fU!lction of s. Since
'Pp(s) = (3 +S2)p + (3 - s)P + 1, fP;(s) > 0 for s E (0.3) and p > 2. In order to
estimate the location of the minimum of fP p, we now compute fPp(p-a) for
various values of a. We have that

In particular, for a = 1 we have
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which is asymptotic to 3P (1 +e- 1
/
3

) as p -> 00. Similar computations show
that ((Jp(p-l!2) is asymptotic to Y(e 1!3) and that ((Jp(p-l!4) is larger than
2(3 P) for large p. Since ({Jp(s) is concave up, we must have that, for large p,
the minimal value for ({Jp(s) must occur between p-l and p-l!4, i.e.,
p-l ~ b ~p-l/4.

Note that x p , the best /P approximation from H to 0, must be of the
form xp = AW + (1 - A) z, where w = (3, 3, 0) and Z E K. Furthermore, since
x p is optimal, Z must lie on the boundary of K. Hence z = (3 +a2

, 3 - a, 1)
and x p=(3+(I-A)a2,3-(I-A)a,I-A) for some a=ap;:'O and
,1= ApE [0,1]. Let lip = (3 + (I-A)a 2, 3 - (1- A)a, 1). Since llpE K and it
agrees with x p in the first and second coordinates, we must have

and

({Jp(~p)+ 1;:, ({Jp(rJ p);:' ((Jp(~p).

Let l/;p=(3+f32,3-f3, 1), where f3=f3p=~ap. Then l/;p is in the
boundary of K and it agrees with 'ip in the first and third coordinates. We
must have ({Jp(~p)+I;:'({Jp(l/;p);:'({Jp(~p) and, equivalently, ({Jp(b)+I;:,
({Jp(f3);:' ({Jib). Furthermore, since for large p ({Jp(p-l/4) ~ ({Jp(p-l/2) and
((Jp(p-l)~({Jp(p-l/2),we know that p-l/4;:,f3p;:'p-l.

We now estimate the quantity Llp=({JirJp)-({Jp(l/;p). If Ll p>l, then
({Jp(l/;p) < ({Jp(xp), which is impossible. Thus 1 ;:'Ll p' Note that

Ll p=(3-(I-A)a)p-(3-JI-Aa)p

= (3 - jl""=): f3)P - (3 - f3)P

= (3 - f3 + (1jl""=):)f3)P - (3 - f3)P

;:, (3 - f3)P +P +p(3 - f3)P-l(l- )1- A)f3 - (3 - f3)P.

Since f3 > P -1, we have

1;:, Ll p;:' (1-~)(3 - f3pjP- \

so it must be that Ap ->°as p -> 00. Since f3p;:' P -1/4, f3p ->°and hence,
ap -> °as p -> 00. Thus

as p -> 00.

In our discussion of Example 2, we will use the following observations
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concerning perturbations of an approximating set. Let F consist of aU
compact convex subsets of R 3

• For any set C in F, let

U(C, e)= U {y: Ily-xllx" <5}
XEC

and, for A and B in r, let

D(A, B)=inf{e: A e U(B, e) and Be U(A, el},

the Hausdorff distance between A and B. It is easily shown that

(1) If l<p<yo and if F:<r,D)----+<R 3,1:-I1",) is defined by
F(M) = xp(M), then F is continuous, and

(2) If 1 < P < 'YO, if MEr, and if M' is the closed convex hull of any
subset of M which contains ;x)M), then xp(M') = xp(M).

EXAMPLE 2. Let H be the set given in Example 1. We now construct a
set, H', which is the limit of a sequence of polytopes in H, and on which
the P6lya algorithm does not converge.

Let {p,,} be any strictly increasing sequence such that PI): 1 and
PI! ----+x. Then xp.(H) ----+ (3, 3, 1) as n ----+ YO. Let qj = PI and let Ho be the
convex hull of the points (3, 3, 0), (3, 3, 1) and x pJ H). Since H0 is a
polytope and the strict approximation to 0 in H o is (3,3,0), the results in
[5J show that there exists a real number q2 > 2q) such that xq,(Ho) has
third coordinate less than !. By (1) and (2), there exists q3 in the
set {p,,:n>1} such that q3>2q2 and, if H, is the convex hull of
HoU {xqJ(H)}, then xq,(H,) has third coordinate less than 1 and
xqJ{H,) = xqJ(H).

Continuing in this fashion, we obtain a sequence of polytopes H o, HI, .. "
such that, for each k): 0, H k is the convex hull of H k - 1 U {xq(H)}, where
q = qk + 2 E {p,,: n = 1, 2, ,,,}, x qk + ,(H) has third coordinate less than !, and
xqk+JHk ) = xqk+,(H). Let H' = U~~o H k • Then the sequence {xqJH' )} does
not converge.

Remarks. Example 2 is sharp in two senses. First, since the P61ya
algorithm converges in R 2 for every closed, convex approximating set [5],
the dimension in this example is minimal. Second, since the algorithm is
known to converge for M any polytope in R" [5J, and since H' is an
(essentially) disjoint union of tetrahedra, there is little possibility of ensur­
ing convergence on more general sets.

Example 2 can also be viewed as a generalization of results in [3 J, where
it was shown that even if x p converges, it need not converge Hlonotonically.

640'562-7



216 EGGER AND HUOTARI

Finally, we contrast the examples above with the results of Landers and
Rogge. It is an immediate consequence of [6J that the P6lyaesque limit of
the x p , p ~ 1, must converge to the "natural" best II approximation.
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